1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
| 观察两条sql语句 SELECT a.id, b.user_name FROM test1 a JOIN test2 b ON a.id = b.id WHERE a.id > 2;
SELECT a.id, b.user_name FROM (SELECT * FROM test1 WHERE id > 2) a JOIN test2 b ON a.id = b.id;
这两条sql语句输出的结果是一样的,但是哪条sql执行效率高呢 有人说第一条sql执行效率高,因为第二条sql有子查询,子查询会影响性能 有人说第二条sql执行效率高,因为先过滤之后,在进行join时的条数减少了,所以执行效率就高了
到底哪条sql效率高呢,我们直接在sql语句前面加上 explain,看下执行计划不就知道了嘛 在第一条sql语句前加上 explain,得到如下结果 hive (default)> explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id where a.id >2; OK Explain STAGE DEPENDENCIES: Stage-4 is a root stage Stage-3 depends on stages: Stage-4 Stage-0 depends on stages: Stage-3
STAGE PLANS: Stage: Stage-4 Map Reduce Local Work Alias -> Map Local Tables: $hdt$_0:a Fetch Operator limit: -1 Alias -> Map Local Operator Tree: $hdt$_0:a TableScan alias: a Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (id > 2) (type: boolean) Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int) outputColumnNames: _col0 Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE HashTable Sink Operator keys: 0 _col0 (type: int) 1 _col0 (type: int)
Stage: Stage-3 Map Reduce Map Operator Tree: TableScan alias: b Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (id > 2) (type: boolean) Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int), user_name (type: string) outputColumnNames: _col0, _col1 Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 _col0 (type: int) 1 _col0 (type: int) outputColumnNames: _col0, _col2 Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: _col0 (type: int), _col2 (type: string) outputColumnNames: _col0, _col1 Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Local Work: Map Reduce Local Work
Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink
在第二条sql语句前加上 explain,得到如下结果 hive (default)> explain select a.id,b.user_name from(select * from test1 where id>2 ) a join test2 b on a.id=b.id; OK Explain STAGE DEPENDENCIES: Stage-4 is a root stage Stage-3 depends on stages: Stage-4 Stage-0 depends on stages: Stage-3
STAGE PLANS: Stage: Stage-4 Map Reduce Local Work Alias -> Map Local Tables: $hdt$_0:test1 Fetch Operator limit: -1 Alias -> Map Local Operator Tree: $hdt$_0:test1 TableScan alias: test1 Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (id > 2) (type: boolean) Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int) outputColumnNames: _col0 Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE HashTable Sink Operator keys: 0 _col0 (type: int) 1 _col0 (type: int)
Stage: Stage-3 Map Reduce Map Operator Tree: TableScan alias: b Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE Filter Operator predicate: (id > 2) (type: boolean) Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: id (type: int), user_name (type: string) outputColumnNames: _col0, _col1 Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE Map Join Operator condition map: Inner Join 0 to 1 keys: 0 _col0 (type: int) 1 _col0 (type: int) outputColumnNames: _col0, _col2 Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE Select Operator expressions: _col0 (type: int), _col2 (type: string) outputColumnNames: _col0, _col1 Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE File Output Operator compressed: false Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE table: input format: org.apache.hadoop.mapred.SequenceFileInputFormat output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe Local Work: Map Reduce Local Work
Stage: Stage-0 Fetch Operator limit: -1 Processor Tree: ListSink
大家有什么发现,除了表别名不一样,其他的执行计划完全一样,都是先进行 where 条件过滤,在进行 join 条件关联。说明 hive 底层会自动帮我们进行优化,所以这两条sql语句执行效率是一样的。
|